실습
실습 3. 사용자별로 처음 채널과 마지막 채널 알아내기
- 테이블을 데이터프레임으로 로딩
- 데이터프레임별 테이블 이름 지정
!cd /usr/local/lib/python3.8/dist-packages/pyspark/jars && wget https://s3.amazonaws.com/redshift-downloads/drivers/jdbc/1.2.20.1043/RedshiftJDBC42-no-awssdk-1.2.20.1043.jar
from pyspark.sql import SparkSession
spark = SparkSession \
.builder \
.appName("Python Spark SQL #1") \
.getOrCreate()
# Redshift와 연결 및 DataFrame으로 로딩하기
url = "jdbc:redshift://learnde.cduaw970ssvt.ap-northeast-2.redshift.amazonaws.com:5439/dev?user=guest&password=Guest1234"
df_user_session_channel = spark.read \
.format("jdbc") \
.option("driver", "com.amazon.redshift.jdbc42.Driver") \
.option("url", url) \
.option("dbtable", "raw_data.user_session_channel") \
.load()
df_session_timestamp = spark.read \
.format("jdbc") \
.option("driver", "com.amazon.redshift.jdbc42.Driver") \
.option("url", url) \
.option("dbtable", "raw_data.session_timestamp") \
.load()
df_session_transaction = spark.read \
.format("jdbc") \
.option("driver", "com.amazon.redshift.jdbc42.Driver") \
.option("url", url) \
.option("dbtable", "raw_data.session_transaction") \
.load()
df_user_session_channel.createOrReplaceTempView("user_session_channel")
df_session_timestamp.createOrReplaceTempView("session_timestamp")
df_session_transaction.createOrReplaceTempView("session_transaction")
first_last_channel_df = spark.sql("""
WITH RECORD AS (
SELECT /*사용자의 유입에 따른, 채널 순서 매기는 쿼리*/
userid,
channel,
ROW_NUMBER() OVER (PARTITION BY userid ORDER BY ts ASC) AS seq_first,
ROW_NUMBER() OVER (PARTITION BY userid ORDER BY ts DESC) AS seq_last
FROM user_session_channel u
LEFT JOIN session_timestamp t
ON u.sessionid = t.sessionid
)
SELECT /*유저의 첫번째 유입채널, 마지막 유입 채널 구하기*/
f.userid,
f.channel first_channel,
l.channel last_channel
FROM RECORD f
INNER JOIN RECORD l ON f.userid = l.userid
WHERE f.seq_first = 1 and l.seq_last = 1
ORDER BY userid
""")
first_last_channel_df2 = spark.sql("""
SELECT DISTINCT A.userid,
FIRST_VALUE(A.channel) over(partition by A.userid order by B.ts rows between unbounded preceding and unbounded following) AS First_Channel,
LAST_VALUE(A.channel) over(partition by A.userid order by B.ts rows between unbounded preceding and unbounded following) AS Last_Channel
FROM user_session_channel A
LEFT JOIN session_timestamp B
ON A.sessionid = B.sessionid
""")
'데브코스 TIL > 빅데이터, 스트리밍 데이터 처리' 카테고리의 다른 글
Spark Unit Test (0) | 2024.01.17 |
---|---|
Hive 메타 스토어 (0) | 2024.01.17 |
Spark SQL 실습 1 (0) | 2024.01.17 |
Spark SQL 소개 (0) | 2024.01.17 |
Spark 프로그래밍 실습 5 (0) | 2024.01.17 |