top_rev_user_df = spark.sql("""
SELECT userid,
SUM(str.amount) revenue,
SUM(CASE WHEN str.refunded = False THEN str.amount END) net_revenue
FROM user_session_channel usc
JOIN session_transaction str ON usc.sessionid = str.sessionid
GROUP BY 1
ORDER BY 2 DESC
LIMIT 10
""")
top_rev_user_df2 = spark.sql("""
SELECT
userid,
SUM(amount) total_amount,
RANK() OVER (ORDER BY SUM(amount) DESC) rank
FROM session_transaction st
JOIN user_session_channel usc ON st.sessionid = usc.sessionid
GROUP BY userid
ORDER BY rank
LIMIT 10
""")